- STFunc-expression
expression (STFunc)
Works with all licenses.
Function that can be defined by an arbitrary mathematical expression.
expression Parameters
- expression (string)
- Expression to be evaluated, involving the arithmetic operators + (addition), - (subtraction), * (multiplication), / (division), and ** (exponentiation), and the below functions of position and/or time: - Function - Mathematical Description - General Description - pow(x,y) - \(x^y\) - exponential, arbitrary base - exp(x) - \(e^x\) - exponential, base \(e\) - sin(x) - \(\sin\left(x\right)\) - sine - cos(x) - \(\cos\left(x\right)\) - cosine - tan(x) - \(\tan\left(x\right)\) - tangent - asin(x) - \(\arcsin\left(x\right)\), \(x \in \left[-1,1\right]\) - inverse sine - acos(x) - \(\arccos\left(x\right)\), \(x \in \left[-1,1\right]\) - inverse cosine - atan(x) - \(\arctan\left(x\right)\), \(x \in \left[-\pi/2,\pi/2\right]\) - inverse tangent - atan2(y,x) - \(\arctan\left(y/x\right)\); \(x\) and \(y\) not both 0, - inverse tangent, returns angles in correct quadrant - \(x=0\) returns \(\pm \pi/2\) - sinh(x) - \(\sinh\left(x\right)\) - hyperbolic sine - cosh(x) - \(\cosh\left(x\right)\) - hyperbolic cosine - tanh(x) - \(\tanh\left(x\right)\) - hyperbolic tangent - ln(x) - \(\log_e\left(x\right)\) - logarithm, base \(e\) - log(x) - \(\log_e\left(x\right)\) - logarithm, base \(e\) - log10(x) - \(\log_{10}\left(x\right)\) - logarithm, base \(10\) - mod(x,y) - \(x - \lfloor x/y \rfloor y\) - floating point remainder - inv(x) - \(-x\) - additive inverse - H(x) - \(H\left(x\right)=\left\{\begin{array}{lr}0 & , x<0\\0.5 & , x=0\\1 & , x>0\end{array}\right.\) - Heaviside step function - J0(x) - \(J_0\left(x\right)\) - Bessel function of the first kind, order 0 - J1(x) - \(J_1\left(x\right)\) - Bessel function of the first kind, order 1 - J2(x) - \(J_2\left(x\right)\) - Bessel function of the first kind, order 2 - J3(x) - \(J_3\left(x\right)\) - Bessel function of the first kind, order 3 - abs(x) - \(\left|x\right|\) - absolute value - sqrt(x) - \(\sqrt{x}\) - square root - rand(x) - uniform random number in \(\left[0, 1\right)\), independent of \(x\) - gauss(x,y) - Gaussian random number with standard deviation \(x\) and mean \(y\) - ceil(x) - \(\lceil x \rceil\) - smallest integer not less than x - floor(x) - \(\lfloor x \rfloor\) - largest integer not greater than x - min(x,y) - \(x\) if \(x \le y\), else \(y\) - minimum - max(x,y) - \(x\) if \(x \ge y\), else \(y\) - maximum 
Example expression Block
<STFunc component0>
  kind = expression
  expression = 100.*sin(2.0e9*t)
</STFunc>