VSim for Electromagnetics

VSimEMThe Fast, Powerful FDTD for Electromagnetics that solves electromagnetic problems for a variety of material types, yielding engineering outputs that can be used for design of electromagnetic devices.

VSim MIM waveguide modelVSim for Electromagnetics (VSimEM) is a flexible, multiplatform, high-performance, parallel software tool for computationally intensive electromagnetic, electrostatic, and magnetostatic simulations in the presence of complex dielectric and metallic shapes with accurate simulation of curved geometries using a conformal mesh. Shapes can be easily imported from CAD files or constructed in the user-friendly front end, VSimComposer, and are rapidly meshed with the proprietary VMesh algorithm. The advanced graphics capability displays detailed field data. VSimEM models EM propagation and dispersion and can compute radar cross sections and specific absorption rate (SAR). Switch easily between 2 dimensions for initial guiding simulations and 3 dimensions for accurate results.

VSim for Electromagnetics can be used in the design cycle for electromagnetic, electrostatic, and magnetic devices. Compute near-field and far-field radiation patterns from antennas, including patch antennas, horn antennas, parabolic antennas, and phased array antennas. Simulate radar interactions, including ground penetrating radar, with the total-field/scattered-field method. Model propagation in photonic crystals and other optical devices as well as in waveguides. Compute oscillations and Q-factors in resonators and cavities. Compute the electrostatic field from multiple biased shapes in the presence of dielectric materials and/or the magnetic field produced by coils in the presence of geometric objects made of magnetic materials.

With VSim for Electromagnetics you can easily obtain the desired engineering output from your simulation and quickly determine the validity of your model for use in the design of a device. Various output types, such as S-parameters and antenna gain, are simple to achieve with VSim for Electromagnetics. Simulations with different materials are easily set up. VSim for Electromagnetics comes with a rich set of examples to help you get started.

No matter your electromagnetic, electrostatic, or magnetostatic modeling requirements, from antenna design to photonics to semiconductors to iron-core magnets, VSim for Electromagnetics is the economical simulation tool with an easy learning curve that will decrease your time from design to device manufacture. VSimEM easily installs and runs on Windows, Mac OS X, and Linux platforms.

Features

  • Dielectrics
  • Easy construction of complex structures
  • Far field calculations
  • Frequency-domain or time-domain
  • Arbitary geometries
  • Tool for drawing geometries and specifying materials
  • Easy way to add array of single items
  • Variety of material types (ie copper, niobium, etc) 
  • Lossfree and lossy, nonlinear, isotropic and anisotropic material properties
  • Variable mesh in all coordinate systems
  • Radiated-field calculations (directivity, gain, beam width, side-lobe levels, axial ratio, etc.)
  • Far field post-processing
  • S-parameters (single-ended, differential, de-embedded, renormalized)
  • Excitation with port modes, discrete elements, discrete face ports, and plane waves (also circular and elliptical polarized)
  • Variety of established boundary conditions
  • PMLs

Advantages

  • Able to solve your largest problems
  • FDTD with second-order embedded boundary conditions
  • Easily parameterized geometries for parameter sweeping
  • Powerful post-processing capabilities including S-parameters and far-field radiation patterns
  • Simple migration to larger Vorpal Suite for studying advanced physics such as field emission, multipacting, charged particle impacts, and performance in a plasma environment
  • Single GPU module available provided for free with VSim EM delivering solutions at reduced cost.

 

Questions? Contact us

 

Example Simulations Included

These example problems that demonstrate complex geometry, dielectrics, scattering, and advanced analysis are included with VSim for Electromagnetics to jumpstart finding the solution to your problem:

 

Modeling ICRF Heating in Alcator C-Mod

Geometry Construction

This movie gives some detail on the construction of the geometry used to simulate Alcator C-Mod's field-aligned ICRF antenna in VSim. CAD files from the antenna (provided by MIT engineers) are imported to the VSim grid; thereafter, the antenna module is embedded in a half-torus rendering of C-Mod's vacuum vessel. Finally, an equilibrium plasma density profile (provided by MIT scientists) is loaded into the vessel.

Electric Field Contours

Vertical component of the electric field induced by the field-aligned ICRF antenna in the Alcator C-Mod device, in a simulation which imports plasma density and magnetic field profiles from experimental data. The geometry of the simulation is described in Modeling ICRF Heating in Alcator C-Mod: Geometry Construction. The phasing of the antenna straps is [0, π, 0, π]; complex patterns of fast wave propagation into and through the plasma core are clearly visible.

Plasma with Electric Field

Vertical component of the electric field induced by the field-aligned ICRF antenna in the Alcator C-Mod device, in a simulation which imports plasma density and magnetic field profiles from experimental data. In this animation the plasma profile is also shown; the data is the same as was used in Modeling ICRF Heating in Alcator C-Mod: Electric Field Contours, though the view is slightly different. The phasing of the antenna straps is [0, π, 0, π]; complex patterns of fast wave propagation into and through the plasma core are clearly visible.

Midplane Electric Field

Vertical component of the electric field induced by the field-aligned ICRF antenna in the Alcator C-Mod device, in a simulation which imports plasma density and magnetic field profiles from experimental data. In this animation the toroidal midplane of the device is shown; the data is the same as was used in Modeling ICRF Heating in Alcator C-Mod: Plasma with Electric Field, though the view is slightly different. The phasing of the antenna straps is [0, π, 0, π].

 
Poloidal Plane Electric Field

Vertical component of the electric field induced by the field-aligned ICRF antenna in the Alcator C-Mod device, in a simulation which imports plasma density and magnetic field profiles from experimental data. In this animation a two-dimensional poloidal cut across the antenna coax feeds is shown; the phasing of the antenna straps is [0, π, 0, π].

 

VSim Animation

Colliding Laser Pulses Launch an Electron Beam into a Plasma Accelerator

This simulation visualization by Estelle Cormier-Michel of Tech-X was one of the 2011 U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC) program OASCR (for Office of Advanced Scientific Computing Research) award winners.

Laser-Wakefield Accelerators "Dream Beam"

All different incarnations of laser-wakefield accelerators. It shows the background electron density (surface) plus some high-energy particles (beam) as particles.

 
Magnetic Field

The electron density in a 2D simulation of the expansion of a two-component plasma (electrons, ions, at same temperature) in an ambient magnetic field (out of plane). It initially expands symmetrically, but due to the charge separation (on average faster electrons than ions), the electrons get pulled back into the center, leading to some radial oscillations. The ambient magnetic field causes the rotation.

That's a configuration as encountered e.g. after ignition of the target in an Inertial confinement Fusion experiment. This shows that the debris created in an ICF chamber could be confined by a strong magnetic field, thus protecting e.g. the optical inlets into the chamber.

Magnetron

A Magnetron simulation created using VSim.

 
Multipactor Comparison

The video shows a side-by-side comparison of the 2 secondary electron models and how the resonance zone of the realistic model is much wider than that of the simple model.

Photocathode Modeling

Photocathode simulation modeling performed with VSim. Animation created with POV-Ray.

 
TESLA Cavity

Different incarnations of the wakefields generated by the propagation of an electron beam in a TESLA cavity.

 

Plasma Sheath

ITER2x3sheath

Sheath potential on ITER ICRF antenna.

Sheath Plasma Current

This movie shows one of the 24 modules of the ITER RF antenna, immersed in plasma, with a sheath model. Left plot shows sheath potential and right plot shows Je plasma current.

 

NIMROD

current3D

3D NIMROD simulation of the toroidal current density evolution based on an initial 2D reconstructed state from the DIII-D tokamak. This experimental discharge was characterized by an edge-localized mode free state with edge harmonic oscillations. See https://nimrodteam.org and https://fusion.gat.com/global/DIII-D for more information.

pressure3D

3D NIMROD simulation of the pressure evolution based on an initial 2D reconstructed state from the DIII-D tokamak. This experimental discharge was characterized by an edge-localized mode free state with edge harmonic oscillations. See https://nimrodteam.org and https://fusion.gat.com/global/DIII-D for more information.

 
VSim model of EM waves scattering off surfacing submarine
EM Waves Scattering Off of Surfacing Submarine

Wave scattering off of a surfacing submarine demonstrates the near-field capabilities of waves scattering off of a three-dimensional figure with a nearby dielectric.

VSim simulation of patch antenna far field

Patch Antenna Far Field

Calculate the far field radiation pattern for a patch antenna.

VSim 3D model of power absorption in dielectrics with human head in profile

Human Head Profile

Power absorption in dielectrics with complex geometry.

 
VSim predator drone model
Predator Drone

Far field radiation pattern from a point source on a predator drone demonstrates how antenna performance is affected by the local environment.

 

VSim simulation of horn antenna far field

Horn Antenna Far Field

Horn antennas are widely used at UHF and microwave frequencies because of their ability to focus a beam as this far field radiation pattern demonstrates.

VSim electrostatic charged spheres simulation

Electrostatic Charged Sphere

Two charged spheres, solved using electrostatics.

 
VSim simulation of dipole above conducting plane
Advanced Dipole Above Conducting Plane

Excellent verification problem for antenna simulations by comparing the far field patterns with analytic solutions.

VSim 3D model of human head in three quarters view with dipole antenna

Human Head Three Quarters View

A dipole antenna near the ear of a human head displays the complex scattering and absorption of electromagnetic radiation.

VSim logo

Pay Only for the Functionality You Need

 

VSim packages provide the pricing flexibility and convenience you want.  Choose the package or set of packages that has the physics simulation functionality that you need.

VSim two stream instability simulation thumbnailVSim for Basic Simultaions logo
Perfect for learning basic electromagnetic, particle trajectory, and plasma physics. More...

VSim horn antenna model thumbnailVSim for Electromagnetics logo
Fast, Powerful FDTD for Electromagnetics that solves electromagnetic problems. More...

VSim klystron model thumbnailVSim for Microwave Devices logo
Electromagnetic and particle modeling features for magnetrons, klystrons, and More...

vsim capacitively coupled plasma 2D model thumbnailVSim for Plasma Discharges logo
Enables resolution of kinetic effects for discharges not observable in fluid simulations.  More...

VSim colliding laser pulse 3D model thumbnailVSim for Plasma Acceleration logo
Large-scale simulations of laser-plasma and beam-plasma acceleration experiments.  More...

 

VSim packages provide you with a diverse range of relevant examples, macros and the powerful graphical user interface to the simulation engine, together with embedded analysis tools. Functionality is collected in common packages to provide the pricing flexibility and convenience you want. Custom packages are also available to give even more flexibility in pricing. See the VSim Features Matrix.

Request a free VSim Evaluation or contact Tech-X Sales for a quote.

 

Online Tutorials

Watch VSim Video Tutorials on YouTube

 
Ready to evaluate VSim|USim|PSim for free?

 

 

 

     
Go To Top